Key Publications

Microcarriers

  1. “Scaling up stem cell production: harnessing the potential of microfluidic devices”, Ding, Oh, Radfar & Warkiani et al., DOI: 10.1016/j.biotechadv.2023.108271, Biotechnology Advances, 2023.
  2. “Bioreactor-Based Adherent Cells Harvesting from Microcarriers with 3D Printed Inertial Microfluidics”, Ding & Warkiani et al., DOI:10.1007/7651_2021_444, Bioreactors in Stem Cell Biology, 2021.
  3. “Multiomics analyses of cytokines, genes, miRNA, and regulatory networks in human mesenchymal stem cells expanded in stirred microcarrier-spinner cultures”, Oh et al., DOI:10.1016/j.scr.2021.102272, Stem Cell Research.
  4. “Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor”, Oh et al., DOI:10.1186/s13287-020-01618-6, Stem Cell Research & Therapy, 2020.
  5. “Mussel inspired ZIF8 microcarriers: a new approach for large-scale production of stem cells”, Warkiani et al., DOI:10.1039/D0RA04090H, RSC Advances, 2020.
  6. “Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures”, Oh & Warkiani et al., DOI:10.1002/biot.201800674, Biotechnology Journal, 2019.
  7. “Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products”, Oh & Warkiani et al., DOI:10.1016/j.biomaterials.2018.07.016, Biomaterials, 2018.
  8. “Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions”, Oh & Warkiani et al., DOI:10.1038/s41598-018-31019-y , Scientific Reports, 2018.
  9. “Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction”, Oh et al., DOI:10.1016/j.biotechadv.2013.03.006, Biotechnology Advances, 2013.
  10. “Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells”, Oh et Al., DOI:10.1089/ten.tec.2012.0146, Tissue Engineering Part C: Methods, 2012.
  11. “Long-term microcarrier suspension cultures of human embryonic stem cells”, Oh et Al., DOI:10.1016/j.scr.2009.02.005, Oh et al., Stem Cell Research, 2009.

Microfluidics

  1. “Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics”, Radfar, Ding & Warkiani et al., DOI:10.1016/j.bios.2022.114966, Biosensors and Bioelectronics, 2023.
  2. “Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications”, Radfar & Warkiani et al., DOI:10.1016/j.tibtech.2022.02.004, Trends in Biotechnology, 2022.
  3. “Isolation of Circulating Tumor Cells from Seminal Fluid of Patients with Prostate Cancer Using Inertial Microfluidics”, Warkiani et al., DOI:10.3390/cancers14143364, Cancers, 2022.
  4. “A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium”, Warkiani et al., DOI:10.1088/1758-5090/abe4c1, Biofabrication, 2021.
  5. “Improving capture efficiency of human cancer cell derived exosomes with nanostructured metal organic framework functionalized beads”, Warkiani et al., DOI:10.1016/j.apmt.2021.100994, Applied Materials Today, 2021.
  6. “Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model”, Warkiani et al., DOI:10.1002/bit.27612, Biotechnology and Bioengineering, 2021.
  7. “Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics”, Warkiani et al., DOI:10.3390/cancers12010081, Cancers, 2020.
  8. “Circulating tumour cell RNA characterisation from colorectal cancer patient blood after inertial microfluidic enrichment”, Warkiani et al., DOI:10.1016/j.mex.2019.06.012, MethodsX, 2019.
  9. “Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics”, Warkiani et al., DOI:10.1038/nprot.2016.003, Nature Protocols, 2015.
  10. “Selective Separation of microalge cells using inertial microfluidics”, Warkiani et al., DOI:10.1016/j.biortech.2017.12.065, Bioresource Technology, 2017.